

AN IITRODUCTION

Mechanical Heavy Fuel Treatment Systems

Our proprietary Heavy Fuel Treatment and Asphaltene Micro De-Agglomeration Processing System was developed and successfully tested in large heavy fuel marine diesel engines over a number of years. Our equipment micronizes HFO via líquid shear, ultrasonic waves and acceleration power reducing fuel droplet size while breaking down asphaltene molecular chain agglomerations to a 3 micron consistency. This enables asphaltene separator pass-through and combustion enhancing engine efficiency, reducing NOx and particulate emissions. Micro De-Agglomeration of 80% of asphaltene agglomerations for useable fuel improves fuel efficiency and reduces sludge disposal costs and logistics. Based on tried and true engineering concepts, the proprietary and innovative design produces unmatched economic benefits.

WHAT IS IT?

The proprietary Heavy Fuel Micronization and Asphaltene Micro De-Agglomeration Systems are easily and inexpensively installed in-line, are high speed and an intricately designed proprietary stator/rotor system with state-of-the-art Siemens co-designed software controls and sensors, to produce extreme shearing forces that process fuel and asphaltene agglomerations to approximately three microns.

- Fuel, including asphaltene agglomerations, flows over the rotor at high speed.
- The arrangement, location and alignment of every single blade is based upon a highly complex proprietary design.
- Powerful liquid shear forces are created, micronizing the fuel and breaking up the asphaltene agglomerations.
- Organic substances are treated.
- Inorganic substances like cat fines pass through unaltered.
- There is no physical grinding, no metallic contact.
- The rotor is made from 99.99\% pure aluminium - no electro-static issues.
- The surface has a special finish that approximates a diamond coating.
- Wear is virtually eliminated.
- Magnetic coupler driven so no metal on metal contact or seals to replace.

WHAT DOES IT DO?

The system has produced the following benefits in our installed vessel base:

ASPHALTENES REPROCESSING \& RECOVERY

- The LMS REDUCER micro deagglomerates 80% of the asphaltene agglomerations into useable fuel.
- This increases fuel availability and efficiency, significantly reducing sludge disposal costs and related logistics issues.
- Vessels fitted with the LMS REDUCER have secured 'Low Sludge Producing Vessel' designation by MARPOL/IMO, thus expediting in-port processing reducing in-port time delays.

SUMMARY

IRREGULAR FUEL MOLECULAR STRUCTURE AND ASPHALTENE AGGLOMERATION NEGATIVELY IMPACTS EFFICIENCY, PRODUCTIVITY AND PROFITABILITY.

HEAVY FUEL UNDER A 10 MICRON SCALED

- Fuel exists as droplets, not individual molecules.
- Asphaltenes: Dynamically and constantly formed tar-like particles in HFO which are usually discarded as sludge even though they have a high calorific value.
- Fuel droplets typically vary in size in the range of $70-120$ microns in diameter before treatment.
- After treatment, droplets are reduced to a uniform size of less that 3 micron diameter creating a multiple increase in fuel surface area enhancing oxygenation and thus improving combustion.
- Aggregate fuel droplet surface area can be increased by as much as 20 to 40 times.

AFTER TREATMENT

HOW DOES IT DO IT?

The effect of reducing droplet size on surface area

1) Greater surface area
2) Better distribution
of vapour in cylinder
3) More contact with oxygen
4) Improved carburetion
5) Better combustion
6) Reduced sludge

SURFACE AREA $=2 \mu \times 2 \mu \times 6$
$=24 \mu^{2}$
TOTAL S.A. $=24 \mu^{2} \times 64=$ $1.536 \mu^{2}$

HOW DOES IT DO IT?

Option 1

- REDUCER

Installed between the settling tank and the separator/purifier where it converts asphaltene agglomerations to burnable fuel, thereby reducing sludge and improving separator performance.

- IMPROVER

Installed before the fuel rail, reduces fuel droplet size, enhancing oxygenation and combustion, therefore improving fuel efficiency. It also processes remaining asphaltenes, thereby improving MEP while decreasing particulates \& NOx.

HOW DOES IT DO IT?

Option 2

- REDUCER

Installed between the settling tank and the separator/purifier where it converts asphaltene agglomerations into burnable fuel, reducing sludge and improving separator performance.

- INJECTOR

Installed between the day tank and booster unit. It reduces fuel droplet size and injects and emulsifies water to further increase available surface area for oxygenation and combustion, enhancing efficiency and performance. It also processes remaining asphaltenes, thereby improving MEP while decreasing particulates \& NOx.

PARTICULATE REDUCTION

REDUCTION IN NOx

The enhanced combustion efficiency created by the LMS IMPROVER or INJECTOR reduces NOx emissions by 15%.

REDUCED MAINTENANCE

Improved combustion efficiency created by the LMS IMPROVER or INJECTOR keeps the engine cleaner, reduces filter expenses, overall maintenance and overhaul expenses by up to 25%.

REDUCED FUEL CONSUMPTION

The combination of converting 80% of asphaltene agglomerations into useable fuel coupled with improved fuel combustion efficiency through increased oxygenation, generates well in excess of 2% fuel savings, and in some applications from 4\% to 6\%.

ECONOMIC BENEFITS

Seven years of development and successful onboard operations demonstrates that the LMS System materially enhances performance, reduces NOx and particulates, and improves overall efficiency of heavy fuel oil fired engines, generating economic benefits in ten areas as follows:

These ten areas produce significant operational cost reductions and economic benefits.

ECONOMIC BENEFITS

LMS REDUCER

1. Micro de-agglomerates asphaltene agglomerations to three microns thereby enabling separator pass-through and combustion thereby converting approximately 80% of asphaltene agglomerations into useable fuel.
2. Reduces sludge creation and handling and disposal costs by approximately 80%.
3. Installation can often enable vessels to secure 'Low Sludge Producer' certification by MARPOL/IMO leading to fee/tax and scheduling benefits and savings.

ECONOMIC BENEFTS

LMS IMPROVER

4. Reduces fuel droplet size, thereby enhancing oxygenation and combustion efficiency, and reduces NOx emissions by up to 15%, and particulates reduction by up to 65%, thereby sharply reducing pollution emission fees/taxes.
5. Has been shown to improve fuel consumption efficiency by at least 2%, and often significantly more when combined with the LMS REDUCER.

LMS INJECTOR:

6. Reduces fuel droplet size, emulsifies water and fuel, and thereby enhances oxygenation and combustion efficiency while reducing NOx emissions by up to 20%, and particulates reduction by approximately 90%, effectively reducing pollution emission fees/taxes.
7. Has shown to improve fuel consumption by at least 4% when combined with the LMS REDUCER

ECONOMIC BENEFITS

LMS 'THE SYSTEM'

8. Micronization and homogenization of organic material to three microns enhances separator performance and effectiveness.
9. Reduces main engine and HFO fueled auxiliary generator maintenance, as well as reducing supporting item costs (cleaning, filters etc.) by in excess of 25%.
10. Reduces main engine and HFO fueled auxiliary generator overhaul costs by in excess of 25% due to cleaner engines and auxiliaries.

THE NUMBERS + DATA

MARITIME INDUSTRY EXHIBITS - Additional Background Information:
The following slides contain the referenced test results and data based upon a 24 month trial, and are verified by DNV, GERMANISCHER LLOYD
Items to note:

NO IMPACT ON CAT FINES :

- The units have no impact on cat fines and other inorganic materials including water beyond releasing them from asphaltene agglomeration, facilitating separation.

ORGANIC MATERIAL PROCESSING ONLY:

- The LMS treatment only impacts organic materials such as asphaltene agglomerations.

NOx AND PARTICULATE EMISSIONS REDUCED IN DIESEL ENGINES:
-The following exhibits show the results of LMS Improver and Injector (with water), and the resulting homogenization in heavy fuel diesel engınes leading to the reduction of NOx and particulate emissions.

THE NUMBERS + DATA

THE FOLLOWING CHARTS ARE BASED ON TEST DATA EVALUATED AND APPROVED BY M.A.N. \& GERMANISCHER LLOYD

Tests \#1 and \#3 on Cat-Fines performed by FRAS TECHNOLGY and the DNV

THE NUMBERS + DATA

THE FOLLOWING CHARTS ARE BASED ON TEST DATA EVALUATED AND APPROVED BY M.A.N. \& GERMANISCHER LLOYD

Tests \#2 and \#4 on Cat-Fines performed by FRAS TECHNOLGY and the DNV

TEST 2	Units	437723	437228	437725		437726			437730	437731	137332	437733		437734	437735
		2 II							41	4 II	4III	4,			
		Befors separator	Heaw rould sutiet	Atser separator	Rosucting	$\begin{gathered} \text { Sediment } \\ \text { ater } 2 \\ \text { hours } \end{gathered}$	TEST 4	Unds	Before homogenizer	Before separator	$\begin{gathered} \text { Ferm iquid } \\ \text { outed } \end{gathered}$	Ater separabor	Redicton	$\begin{gathered} \text { Sediments from } \\ \text { bowl ater? } \\ \text { hours } \end{gathered}$	Sediments from top ather 2 hours
Densty P 15C	kgim3	1010.9	10117	1010.8			Densty 0 15C	kg/m3	1010, 8	1010, 7	1011.6	1010,6			
Viscosity (3) 500	$\mathrm{mm} 2 / \mathrm{s}$	455	588	453	0.4		Viscosity 0500	mm2's	470	454	572	449	1.1		
Water	\%VN	1.5	9.5	0.8	45 2		Water	\%VN	4.4	4.4	27	1,1	-10,0		
Micro Carbon Residue	\$/mim	15	14	16	62		Mico Corton Residue	\% mmm	15	16	14	16	50		
Sulphut.	\%min	2.9	21	2.9	0.0		Sulphur	8 mm	2.8	29	27	2.9	110		
Total Sediment Evistent	\%mint	0.05	0.04	0.04	30.0		Total Sedinent Existers	Smim	0.03	0.04	0.01	0,01	750		
Total Sediment Potental	Snivn	0.05	0.06	0.03	400		Total Sediment Potential	\%mim	0.03	0.04	0.08	0.02	500		
Total Seciment Accel,	\%minm	0.07	0.03	0.01	857		Total Sediment Accel,	8 mmm	0.04	0.04	0.04	0,02	500		
Ash	\%mim	0.05	0.01	0.04	20:2	$40,3 \mathrm{~F}$	Ash	$\mathrm{Sm} / \mathrm{mm}$	0.05	0.05	0.11	0,05	0.0	50.8	49,1
Vanadium	molg	144	138	145	0.7	764	Vansdium	mgikg	139	149	131	145	21	960	943
Sodium	mglg	25	212	24	40	9031	Sodum	migh	23	26	210	22	15.	15403	13536
Aluminum	mokg	23	14	10	S805	68628 /	Aluninum	mgkg	22	24	16	9	695	82891	79638
Sticon	ming	24	14	11	542	65534.5	Sticon	mg/kg	22	24	16	10	563	77541	68261.
Fon	molla	30	23	21	30.1	34997 I	Iron	magh	28	31	26	23	33	53215	50858
Nide!	mokg	46	41	40	130	609 -	Nickel	mghg	41	45	43	48	43	848	841
Caicium	mgkg	5	4	4	201	6813	Cacium	mogkg	4	4	3	3	30	9321	8957
Magnesium	mg/g	LT 1	LTI	LT 1		1333)	Magnesium	mging	LT1	LTI	LT 1	LTI.		1811	1818
Lead	molg	LT1	LT 1	LTI		276	Lead	mg/kg	LTI	LT1	LTI	LT 1		365	350
Zinc	mekg	1	1	1		1239.2	Zno.	mgikg	1	1	1	1		1894	1804
Phosphorus	migh	LT 1	LII	LT1		310 P	Phoschonus	$\mathrm{mg} / \mathrm{lg}$	LTI	LT1	LTI	LT 1		1110	1024
Asphatane	\%mm	8.9	82	8.8	1.1		Asghatene	\%m/m	7.8	10.8	102	9	16I		
Caculated Values							Calcuisted Vaves								
Net Spectic Energy	M3kg	39.33	35,95	39,64	$\underline{08}$		Net Specific Energy	M, /3g	38.12	39.55	3565	39,51			
CCAI (lyntion Quality)	.	870	853	870	08		CCAI (lgntion Qualiy)	-	870	870	868	870			
Alumin um + Silicon	mitg	47	\%	21	353		Auminium + Silicon	mglkg	44	48	38	19	601		

THE NUMBERS + DATA

SUMMARY EXTRACT

"Based on our findings using the optical microscope, both samples contain the same particle structures. To inspect the shape and surface structure of such small particles, optical microscopes are not suitable. To investigate the presence and structure of cat fines in particular, Scanning Electron Microscopy was used. By detecting secondary electrons from the specimens, spherical shaped particles composed of Al+Si (i.e. cat-fines) were found in both samples. There is not any difference in the cat-fines between the two samples taken before and after the Reducer".

THE FINDINGS IN THIS DOCUMENT HAVE BEEN REVIEWED AND APPROVED BY DET NORSKE VERITAS (DNV).

THE NUMBERS + DATA

LMS - APPLICATION TO VESSELS

Visible proof on the decrease on Soot (Particulates)

Running in Improver Mode

Running in Injector Mode

THE NUMBERS + DATA

REDUCTION OF AVERAGE NOx

THE NUMBERS + DATA

THE NUMBERS + DATA

THE NUMBERS + DATA

(tanan

THE NUMBERS + DATA

THE NUMBERS + DATA

REDUCTION OF NOx

- "0" RUN 55\% MCR

■ "0" RUN 71\% MCR ■"O"RUN 100\% MCR -IMPR 55\% MCR ■IMPR 71\% RUN ■IMPR 100\% RUN ■ 5\% FWE 55\% RUN ■ 5\% FWE 71\% MCR ■ 5\% FWE 100\% MCR ■ 10\% FWE 55\% MCR - 10\% FWE 71\% MCR 10\% FWE 100\% MCR - 15\% FWE 55\% MCR 15\% FWE 71\% MCR -15\% FWE 100\% MCR

10\% FWE 55\% MCR
20\% FWE 71\% MCR - 20\% FWE 100\% MCR

FWE: FUEL WATER EMULSION
IMPR: IMPROVER MODE
IMO MARPOL ANNEX VI ISO 8178 TEST

THE NUMBERS + DATA

REDUCTION OF SFOC g/KWh

THE NUMBERS + DATA

REDUCTION OF SFOC g/KWh

Specific fuel oil consumption according ISO 3046/1 conditions

THE NUMBERS + DATA

REDUCTION OF SFOC g/KWh

Specific fuel oil consumption according ISO 3046/1 conditions

THE NUMBERS + DATA

THE NUMBERS + DATA

REDUCTION OF PM

TAKEN WITH SMOKE PUMP TEST KIT WITH SMOKE SCALE INDEX
FWE: FUEL WATER EMULSION
IMPR: IMPROVER MODE

THE NUMBERS + DATA

REDUCTION OF PM BY BOSCH NUMBER

■ "0" RUN 55\% MCR
■ "0" RUN 71\% MCR
■"0"RUN 100\% MCR

- IMPR 55\% MCR

■ IMPR 71\% RUN - IMPR 100\% RUN

■ 5\% FWE 55\% RUN
■ 5\% FWE 71\% MCR
■ 5\% FWE 100\% MCR
■ 10\% FWE 55\% MCR
-10\% FWE 71\% MCR

- 10\% FWE 100\% MCR
- 15\% FWE 55\% MCR

■ 15\% FWE 71\% MCR
■ 15\% FWE 100\% MCR
■ 20\% FWE 55\% MCR
20\% FWE 71\% MCR

- 20\% FWE 100\% MCR

FWE: FUEL WATER EMULSION
IMPR: IMPROVER MODE

THE NUMBERS + DATA

INCREASE WITH THE BLUEFIN FTS INJECTOR

PLEASE NOTE THAT THE FUEL RACK AT FULL LOAD HAS TO BE ADJUSTED AND FIXED BY THE ENGINE BUILDER IF NECESSARY

